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Abstract

An analysis is made of laminar forced convection in a helical pipe of circular cross-section and filled by a porous

medium saturated with a fluid, for the case when the curvature and torsion of the pipe are both small. The Darcy model

is employed, and boundaries with either uniform flux or uniform temperature are considered. It is found that curvature

induces a secondary flow at first order in the parameter e = ja, where j is the curvature and a is the radius of the pipe.

On the other hand, the Nusselt number is unchanged to first order in e but is increased at second order, for either set of

thermal boundary conditions. The effect of torsion on the velocity appears at second order, but torsion does not affect

the Nusselt number at second order.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The hydrodynamics of laminar flow of a Newtonian

fluid in a helical pipe has received considerable atten-

tion. Applications have included blood flow in a segment

of human coronary artery [1]. However, the heat trans-

fer aspect has received less attention, and we located

fewer than a dozen papers [2–12] on that aspect. In the

case of a porous medium occupying the helical pipe, it

appears that nothing has been published, on either the

hydrodynamic or heat transfer aspect, and the present

paper is aimed to provide an analysis to fill that gap.

The key to progress towards an analytical solution is
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to employ the orthogonal set of coordinates introduced

by Germano [13,14]. Our main results are based on a

perturbation expansion for small values of the curvature

and torsion.

It is envisaged that our work might be applicable to

flow in a section of a coronary artery blocked by some

porous tissue. No experimental data is available for

comparison.
2. Analysis

On the Darcy model the governing equations for

mass conservation and momentum are

r � v� ¼ 0; ð1Þ

l
v� ¼ �rP �: ð2Þ
K

ed.
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Nomenclature

a radius of the helical pipe, defined in Fig. 1b

A constant defined in Eq. (52)

cp specific heat at constant pressure

Da Darcy number, K/a2

F function defined in Eq. (56)

Ja Bessel functions of the first kind

K permeability of the porous medium

Nu Nusselt number, defined in Eq. (38)

p pitch, defined in Fig. 1a

P dimensionless pressure, P*/qU2

P* pressure

q
00

wall heat flux

r dimensionless radial coordinate, r*/a

r* radial coordinate

R radius of the coil, defined in Fig. 1a

Re Reynolds number, Ua/m
s dimensionless axial coordinate, s*/a

s* axial coordinate

T* temperaturebT dimensionless temperature, defined in Eq.

(37)

T �
m bulk mean temperature, defined in Eq. (39)

T �
w wall temperature

u,v,w dimensionless velocity components, u*/U,

v*/U,w*/U

u*,v*,w* velocity components

U characteristic velocity

Greek symbols

e dimensionless curvature, ja
h angle, defined in Fig. 1b

j curvature, R/(R2 + p2)

k ratio of torsion to curvature, s/j
m fluid kinematic viscosity

n angle, defined in Eq. (10)

q fluid density

s torsion, p/(R2 + p2)

/ angle, defined in Fig. 1b, �
R s
s0
sds0

x parameter defined in Eq. (9)
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Here v* = (u*,v*,w*) is the Darcy (filtration) velocity,

P* is the pressure, l is the fluid viscosity and K is the

permeability of the porous medium. The Darcy momen-

tum Eq. (2) applies on the scale of a representative ele-

mentary volume (REV) of the porous medium for slow

flow (pore-scale Reynolds number less than unity). Cur-

vature and torsion affect the inertial terms in the

momentum equation, but on the Darcy model inertial

terms are neglected anyhow.

The following dimensionless variables are introduced

and fitted to Germano�s helical orthogonal coordinate

system (see Fig. 1a and b for the definition of the

coordinates).

s¼ s�

a
; r¼ r�

a
; ðu;v;wÞ¼ u�

U
;
v�

U
;
w�

U

� �
; P ¼ P �

qU 2
: ð3Þ

Here q is the fluid density and U is a characteristic

velocity.

The dimensionless governing equations become

x
ou
os

þ ov
or

þ 1

r
ow
oh

þ v
r
þ ex½v sinðhþ /Þ þ w cosðhþ /Þ� ¼ 0;

ð4Þ

u ¼ �xReDa
oP
os

; ð5Þ

v ¼ �ReDa
oP
or

; ð6Þ
w ¼ � 1

r
ReDa

oP
oh

; ð7Þ

where

Re ¼ Ua=m; Da ¼ K=a2; e ¼ aj; ð8Þ

x ¼ 1

1þ er sinðhþ /Þ : ð9Þ

Here j is the curvature, and the angle / is the integral

with respect to s of the torsion s.
The following transformation leads to helically sym-

metric solutions:

hþ / ) n;
o

os
) o

os
� ek

o

on
;

o

oh
) o

on
; ð10Þ

where

k ¼ s=j: ð11Þ

The continuity equation becomes

x
ou
os

� xek
ou
on

þ ov
or

þ v
r
þ 1

r
ow
on

þ ex v sin nþ w cos n½ � ¼ 0:

ð12Þ

For a fully developed flow, we set s-derivatives to zero

(with the exception of the pressure derivative), so

ov
or

þ v
r
þ 1

r
ow
on

þ ex v sin nþ w cos n� k
ou
on

� �
¼ 0: ð13Þ



Fig. 1. (a) Helical pipe of curvature j = R/(R2 + p2) and torsion s = p/(R2 + p2); (b) helical coordinate system.
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The momentum equations are now:

u ¼ �xReDa
oP
os

� ek
oP
on

� �
; ð14Þ

v ¼ �ReDa
oP
or

; ð15Þ

w ¼ � 1

r
ReDa

oP
on

; ð16Þ

where

x ¼ 1

1þ er sin n
: ð17Þ

Assuming that e� 1 (this assumes small curvature)

and k and ReDa are of order unity (this implies small

torsion as well) and introducing the following expan-

sion, we let

u ¼ u0ðrÞ þ eu1ðn; rÞ þ e2u2ðn; rÞ þ � � � ; ð18Þ

v ¼ ev1ðn; rÞ þ e2v2ðn; rÞ þ � � � ; ð19Þ

w ¼ ew1ðn; rÞ þ e2w2ðn; rÞ þ � � � ; ð20Þ

P ¼ P 0ðsÞ þ eP 1ðn; rÞ þ e2P 2ðn; rÞ þ � � � : ð21Þ

The following solution for the zero-order velocity is

obtained:

u0 ¼ �ReDa
oP 0

os
; v0 ¼ 0; w0 ¼ 0: ð22Þ

Eq. (22) tells us that the zero-order velocity is a slug

flow.

The following equations for the first-order variables

are then obtained:

ov1
or

þ 1

r
ow1

on
þ v1

r
¼ 0; ð23Þ
u1 ¼ �ReDa
oP 1

os
� r sin n

oP 0

os

� �
; ð24Þ

v1 ¼ �ReDa
oP 1

or
; ð25Þ

w1 ¼ � 1

r
ReDa

oP 1

on
: ð26Þ

The requirement that the velocity be bounded at r = 0

requires that oP1/on = 0 and so w1 = 0, from Eq. (26).

Then Eq. (23) implies that rv1 is a function of s and n
only. Again, the requirement that the velocity be

bounded at r = 0 requires that v1 = 0 and so

oP1/or = 0, from Eq. (25). Hence P1 is a function of

s only. Integration with respect to s from one end

of the channel to the other gives P1 = 0. Hence the

first-order solution is

u1 ¼ ReDaðr sin nÞð�oP 0=osÞ;
v1 ¼ w1 ¼ 0:

ð27a; b; cÞ

Thus the effect of the curvature is to increase the axial

velocity in one half of the channel and to decrease it in

the other half, in accordance with expectations. The

reader will note that rsinn is the distance from a ‘‘neutral

diameter’’ (n = 0, in the direction of the normal vector

N, and its extension) in a plane of cross-section.

At second order, the equations are

ov2
or

þ v2
r
þ 1

r
ow2

on
¼ �kReDar cos n

oP 0

os
; ð28Þ

u2 ¼ �ReDa
oP 2

os
þ r2sin2n

oP 0

os

� �
; ð29Þ

v2 ¼ �ReDa
oP 2

or
; ð30Þ
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w2 ¼ � 1

r
ReDa

oP 2

on
: ð31Þ

The solution is

u2 ¼ ReDar2sin2nð�oP 0=osÞ;
v2 ¼ 1

2
kReDar cos nð�oP 0=osÞ;

w2 ¼ 0:

ð32a; b; cÞ

It follows that, to second order,

u ¼ ReDað�oP 0=osÞð1þ er sin nþ e2r2sin2nÞ: ð33Þ

The mean velocity is

U ¼ 1

p

Z 1

0

Z 2p

0

ReDað�oP 0=osÞ

�ð1þ er sinnþ e2r2sin2nÞrdrdn
¼ReDað�oP 0=osÞð1þ e2=4Þ: ð34Þ

We introduce a new dimensionless variable

û ¼ u=U : ð35Þ

It then follows that

û ¼ 1þ er sin nþ e2ðr2sin2n� 1=4Þ: ð36Þ

We also introduce a non-dimensional temperature bT
and a Nusselt number Nu defined by

bT ¼ T � � T �
w

T �
m � T �

w

; ð37Þ

Nu ¼ 2aq00

kðT �
w � T �

mÞ
: ð38Þ

Here q
00
is the wall heat flux, T �

w is the wall temperature

and T �
m is the bulk mean temperature defined by

T �
m ¼ 1

pa2U

Z a

0

Z 2p

0

u�T �r� dr� dn: ð39Þ

In terms of dimensional quantities, the thermal energy

equation

u�
oT �

ox�
¼ k

qcp
r2T �: ð40Þ
2.1. Case A. Uniform flux boundaries

For the case of boundaries held at constant uniform

heat flux, the first law of thermodynamics implies that

the axial temperature gradient is a constant, given by

oT �

ox�
¼ 2q00

qcpaU
: ð41Þ

We assume that the appropriate Péclet number is suffi-

ciently large so that the axial conduction may be ne-
glected. In terms of the helical coordinates and

dimensionless quantities the thermal energy equation

becomes

o2bT
or2

þ 1

r
obT
or

þ 1

r2
o2bT
on2

¼ �Nuû

¼ �Nuð1þ er sin n

þ e2r2sin2n� 1=4Þ: ð42Þ

This must be solved subject to the conditions that bT ¼ 0

at r = 1 and that bT is finite at r = 0. The solution is

found to be

bT ¼ 1

4
Nu 1� r2 þ 1

2
eðr � r3Þ sin n

�

� 1

24
e2½3� 6r2 þ 3r4 þ 4ðr2 � r4Þ cos 2n�

�
: ð43Þ

The definitions of Nu and bT require the compatibility

condition

1

p

Z 1

0

Z 2p

0

ûbT rdrdn ¼ 1: ð44Þ

With Eqs. (36) and (43), Eq. (44) determines Nu. To sec-

ond order in e, one finds that

Nu ¼ 8ð1þ e2=12Þ: ð45Þ

Thus we conclude that, to first order, the Nusselt num-

ber is not affected by the curvature and torsion of the

pipe, but the effect of curvature is to increase the Nusselt

number at second order.

2.2. Case B. Uniform temperature boundaries

In the case where the boundaries are held at constant

uniform temperature, Eq. (42) is replaced by

o2bT
or2

þ 1

r
obT
or

þ 1

r2
o2bT
on2

þ Nu½1þ er sin n

þ e2ðr2sin2n� 1=4Þ�bT ¼ 0: ð46Þ

We now employ a perturbation procedure. We write

bT ¼ T 0ðrÞ þ eT 1ðr; nÞ þ e2T 2ðr; nÞ þ � � � ;
Nu ¼ Nu0 þ eNu1 þ e2Nu2 þ � � � :

ð47Þ

The zeroth order equation is

d2T 0

dr2
þ 1

r
dT 0

dr
þ Nu0T 0 ¼ 0: ð48Þ

The solution, subject to the conditions T0(1) = 0 and

T0(r) finite at r = 0, is

T 0 ¼ AJ 0ð~krÞ; ð49Þ

where

Nu0 ¼ ~k
2
; ð50Þ
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and ~k ¼ 2:40483 (the smallest positive zero of the func-

tion J0(x)).

The compatibility condition

Nu ¼ �2
dbT
dr

ð1Þ ð51Þ

leads to

A ¼
~k

2J 1ð~kÞ
; ð52Þ

T 0 ¼
~kJ 0ð~krÞ
2J 1ð~kÞ

: ð53Þ

The first-order equation is

o2T 1

or2
þ 1

r
oT 1

or
þ 1

r2
o2T 1

on2
þ Nu0T 1

¼ �ðNu0r sin nÞT 0 � Nu1T 0: ð54Þ

Solvability requires that the right-hand side of Eq. (54)

be orthogonal to T0, and this implies that Nu1 = 0, since

the term involving sinn vanishes on integration with

respect to n from 0 to 2p.
Hence, to first order in e, one finds that

Nu ¼ ð2:404830Þ2 ¼ 5:783; ð55Þ

independent of the value of e. Thus we again conclude

that, to this order, the Nusselt number is not affected

by the curvature and torsion of the pipe.

The solution of Eq. (54) is of the form

T 1 ¼ F ðrÞ sin n; ð56Þ

where

d2F
dr2

þ 1

r
dF
dr

� F
r2

þ Nu0F ¼ �Nu0rT 0; ð57Þ

where T0 is given by Eq. (53). Eq. (57) must be solved

subject to the conditions that F(1) = 0 and F finite at

r = 0. We have been unable to obtain an analytical solu-

tion of this equation, and we believe that none is obtain-

able. This blocks us from proceeding analytically. When

F(r) has been found numerically one can proceed to the

second-order equation

o2T 2

or2
þ1

r
oT 2

or
þ 1

r2
o2T 2

on2
þNu0T 2

¼�Nu0ðr sinnÞT 1�Nu0ðr2sin2n�1=4ÞT 0�Nu2T 0:

ð58Þ

Again, solvability requires that the right-hand side of

this equation be orthogonal to T0. This requirement

leads to the formula

Nu2 ¼
Nu0
4

R 1

0
fð1� 2r2ÞT 2

0 � 2rFT 0grdrR 1 T 2
0rdr

: ð59Þ

0

The solution for F(r) may be found by reduction of the

second-order Eq. (57) to a system of first-order differen-

tial equations and shooting.

Define y1 = F and y2 = F 0 where the prime denotes a

derivative with respect to the independent variable x,

which replaces r in standard notation. Then we have

y01 ¼ y2;

y02 ¼ � y2
x
þ y1
x2

� Nu0y1 � Nu0xT 0:
ð60a;bÞ

One starts with y1(0) = a, y2(0) = 0 and iterates on a un-

til the condition y1(1) = 0 is satisfied. The function y1
thus obtained is the required function F.

In this way we found that a = 0, a result to be ex-

pected since the non-homogeneous term in Eq. (57) van-

ishes when r = 0. Then the expression in Eq. (59) can be

computed numerically. Our calculation gave Nu2 =

0.40762. We conclude that

Nu ¼ 5:783ð1þ 0:0705e2Þ: ð61Þ
3. Discussion

We conclude that the effect of the curvature is to in-

crease the Nusselt number. The increase is a second-

order effect, and is the result of the addition of three

effects, due to respectively (i) the second-order velocity

distribution, (ii) the second-order temperature distribu-

tion, and (iii) the interaction of the first-order velocity

distribution with the first-order temperature distribu-

tion. It is possible to trace the individual contributions

of these three effects. It turns out that in Case A (uni-

form flux boundaries) the contributions to Nu2 are in

the ratio (1:1:�1), and the net contribution is positive.

In Case B (uniform temperature boundaries) the contri-

butions are in the ratio (1:0:�0.5000) and again the net

contribution to Nu2 is positive.

Looking back at our analysis, we see that the torsion

affects the velocity field at second order (see the term in k
in Eq. 32(b)), but this does not lead to any second-order

term in the expression for the Nusselt number. The effect

is to produce a small velocity component in the radial

direction, which is positive in one half of the pipe

(bounded by a diameter in the direction of the binormal

vector B) and negative in the other half plane. The insig-

nificant effect of torsion on heat transfer predicted here

is consistent with the experimental result of Xin and

Ebadian [7] who reported that no effects of torsion were

observed in the scope of their investigation with various

Newtonian fluids. (The numerical work of Yang et al.

[2,5] indicates that for a fluid clear of solid material

the presence of moderate torsion can decrease the Nus-

selt number by a significant amount, with the effect

increasing as the Prandtl number increases. However,

this could be due to the non-linear inertial term that is
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present in the momentum equation for a the clear fluid

but is absent for the Darcy model.) Our result for a por-

ous medium is also consistent with the conclusion

reached by Bolinder [15] for flow in a fluid clear of solid

material.
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